bl2086 的問題

About **PDE**:

Walter Strauss, Partial Differential Equations, An Introduction, 2nd Edition, P.47

- 5. Prove properties (a) to (e) of the diffusion equation $(1)(u_t = ku_{xx})$.
- (a) The translate u(x-y, t) of any solution u(x, t) is another solution, for any fixed y.

SOLUTION:

Let
$$v(x, t) = u(x - y_0, t)$$
, For $u_t = ku_{xx}$, $v_t = u_t(x - y_0, t) = ku_{xx}(x - y_0, t)$, $v_x = u_x(x - y_0, t)$, $v_{xx} = u_{xx}(x - y_0, t)$, Then $v_t = u_t(x - y_0, t) = ku_{xx}(x - y_0, t) = kv_{xx}$ Q.E.D.

(b) Any derivative $(u_x \text{ or } u_t \text{ or } u_{xx}, \text{ etc.})$ of a solution is again a solution. SOLUTION:

$$(u_x)_t = u_{tx} = (u_t)_x = (ku_{xx})_x = ku_{xxx} = k(u_x)_{xx}$$

$$(u_t)_t = (ku_{xx})_t = ku_{txx} = k(u_t)_{xx}$$

$$(u_{xx})_t = u_{txx} = (u_t)_{xx} = (ku_{xx})_{xx} = ku_{xxxx} = k(u_{xx})_{xx}$$
Q.E.D.

(c) A linear combination of solutions of (1) is again a solution of $(1)(u_t = ku_{xx})$. (This is just linearity.)

SOLUTION:

For
$$u_t = ku_{xx}$$
, Let $u = c_1u_1 + c_2u_2 + \cdots + c_nu_n$, then $u_t = c_1(u_1)_t + c_2(u_2)_t + \cdots + c_n(u_n)_t = k(c_1(u_1)_{xx} + c_2(u_2)_{xx} + \cdots + c_n(u_n)_{xx}) = ku_{xx}$ Q.E.D.

(d)An integral of solutions is again a solution. Thus if S(x,t) is a solution of $(1)(u_t = ku_{xx})$, then so is S(x-y, t) and so is

$$v(x, t) = \int_{-\infty}^{\infty} S(x - y, t)g(y)dy$$

for any function g(y), as long as this improper integral converges appropri-

ately. (We' ll worry about convergence later.) In fact, (d) is just a limiting form of (c).

SOLUTION:

For
$$S_t(x-y, t) = kS_{xx}(x-y, t)$$

$$v_{t}(x, t) = \int_{-\infty}^{\infty} S_{t}(x - y, t)g(y)dy = \int_{-\infty}^{\infty} kS_{xx}(x - y, t)g(y)dy$$

$$v_{x}(x, t) = \int_{-\infty}^{\infty} S_{x}(x - y, t)g(y)dy, \ v_{xx}(x, t) = \int_{-\infty}^{\infty} S_{xx}(x - y, t)g(y)dy$$

$$v_{t}(x, t) = \int_{-\infty}^{\infty} S_{t}(x - y, t)g(y)dy = \int_{-\infty}^{\infty} kS_{xx}(x - y, t)g(y)dy$$

$$= k \int_{-\infty}^{\infty} S_{xx}(x - y, t)g(y)dy = kv_{xx}(x, t)$$

Q.E.D.

(e)If u(x, t) is a solution of $(1)(u_t = ku_{xx})$, so is the dilated function $u(\sqrt{a}x, at)$, for any a > 0. Prove this by the chain rule: SOLUTION:

Let
$$v(x, t) = u(\sqrt{ax}, at)$$
, then $v_t = au_t(\sqrt{ax}, at) = aku_{xx}(\sqrt{ax}, at)$
 $v_x = \sqrt{a}u_x(\sqrt{ax}, at)$, and $v_{xx} = au_{xx}(\sqrt{ax}, at)$, so $v_t = au_t(\sqrt{ax}, at) = aku_{xx}(\sqrt{ax}, at) = kv_{xx}$ Q.E.D.