bl2086 的問題

About **PDE**:

Walter A. Strauss, Partial Differential Equations, An Introduction, 2nd Edition P.41

Show that the wave equation $(u_{tt} = c^2 u_{xx})$ has the following invariance properties.

(a) Any translate u(x-y, t), where y is fixed, is also a solution.

SOLUTION:

Let
$$v(x, t) = u(x - y_0, t)$$
, then $v_t = u_t(x - y_0, t)$, and $v_{tt} = u_{tt}(x - y_0, t) = c^2 u_{xx}(x - y_0, t)$

$$v_x = u_x(x - y_0, t), v_{xx} = u_{xx}(x - y_0, t),$$

So
$$v_{tt} = u_{tt}(x - y_0, t) = c^2(u_{xx}(x - y_0, t)) = c^2v_{xx}$$
 Q.E.D.

(b) Any derivative, say u_x , of a solution is also a solution.

SOLUTION:

For
$$u_{tt} = c^2 u_{xx}$$
, let $v = u_x$, then $v_{tt} = u_{xtt} = (u_{tt})_x = (c^2 u_{xx})_x = c^2 u_{xxx} = c^2 (u_x)_{xx} = c^2 v_{xx}$ Q.E.D.

(c) The dilated function u(ax, at) is also a solution, for any constant a.

SOLUTION:

For
$$u_{tt} = c^2 u_{xx}$$
, Let $v(x, t) = u(ax, at)$, then $v_t = au_t(ax, at)$, $v_{tt} = (au_t(ax, at))_t = a^2 u_{tt}(ax, at) = a^2 c^2 u_{xx}(ax, at)$,

$$v_x = (u_t(ax, at))_x = au_x(ax, at), \ v_{xx} = (au_x(ax, at))_x = a^2u_{xx}(ax, at)$$

So $v_{tt} = a^2c^2u_{xx}(ax, at) = c^2(a^2u_{xx}(ax, at)) = c^2v_{xx}$ Q.E.D.