三次及四次方程式

李白飛

一個一般的三次方程式 $x^3+bx^2+cx+d=0$ 經由 $y=x+\frac{b}{3}$ 的代換,可變 形為缺二次項的較簡形式: $y^3+py+q=0$,其中 $p=c-\frac{b^2}{3}$, $q=d-\frac{bc}{3}+\frac{2b^3}{27}$,如能解出後者的三個根 $y_1,\ y_2,\ y_3$,則 $x_i=y_i-\frac{b}{3}$ $(i=1,\ 2,\ 3)$ 即為原方程的三個根,因此我們就只討論方程式 $y^3+py+q=0$.

我們先將 y 折成兩部分,即令 y = u + v,u 與 v 的關係符定,代入原式得

$$(u+v)^3 + p(u+v) + q = 0$$

即

$$u^{3} + v^{3} + (3uv + p)(u + v) + q = 0$$

從這裏我們可以看到,如果 u, v 满足 3uv+p=0,整個式子驟然簡化,因此令 $v=-\frac{p}{3u}$,亦即令 $y=u-\frac{p}{3u}$,則 $u^3-\frac{p^3}{27u^3}+q=0$,亦即 $u^6+qu^3-\frac{p^3}{27}=0$,此為 u^3 的二次方程式,故可解得

$$u^{3} = -\frac{q}{2} \pm \sqrt{(\frac{q}{2})^{2} + (\frac{p}{3})^{3}}.$$

設 A 為 $-\frac{q}{2}+\sqrt{(\frac{q}{2})^2+(\frac{p}{3})^3}$ 的一個立方根,而 $B=-\frac{p}{3A}$,因

$$B^{3} = -\frac{p^{3}}{27A^{3}} = -\frac{p^{3}}{27\left[\frac{q}{2} + \sqrt{\left(\frac{q}{2}\right)^{2} + \left(\frac{p}{3}\right)^{3}}\right]} = -\frac{q}{2} - \sqrt{\left(\frac{q}{2}\right)^{2} + \left(\frac{p}{3}\right)^{3}}$$

故 $u=A,\ A\omega,\ A\omega^2,\ B,\ B\omega,\ B\omega^2$,其中 $\omega=-\frac{1}{2}+\frac{\sqrt{3}}{2}i$ 為 1 的一個立方虚根,因此 $y=A+B,\ A\omega+B\omega^2$ 或 $A\omega^2+B\omega$,我們很容易可以驗證這三個數確是 $y^3+py+q=0$ 的根,例如 $y=A\omega+B\omega^2$,則 $y^3=A^3+B^3+3\omega A^2B+3\omega^2AB^2=-q-p(A\omega+B\omega^2)=-q-py$

$$p.s.\ u_1=A,\ v_1=B$$
,當 $u=A\omega=u_1\omega,\ v=-rac{p}{3u}=-rac{p}{3u_1\omega}=(rac{-p}{3u_1})rac{1}{\omega}=$

$$v_1\omega^2 = B\omega^2$$
,當 $u = A\omega^2 = u_1\omega^2$, $v = -\frac{p}{3u} = -\frac{p}{3u_1\omega^2} = (-\frac{p}{3u_1})\frac{1}{\omega^2} = v_1\omega = B\omega$

例:解
$$y^3+9y-6=0$$

解:令 $y=u-\frac{3}{u}$,則 $u^3-\frac{27}{u^3}-6=0$,即 $u^6-6u^3-27=0$,因此 $u^3=-3$
或 9,取 $u=-\sqrt[3]{3}$,則 $y=-\sqrt[3]{3}+\sqrt[3]{9},\ -\sqrt[3]{3}\omega+\sqrt[3]{9}\omega^2,\ -\sqrt[3]{3}\omega^2+\sqrt[3]{9}\omega$

然而上述解法也有不理想的地方,例如 $y^3-y=0$,這個方程式可經由因式分解而解得 =0, 1 或 -1,然而利用上法,令 $y=u+\frac{1}{3u}$,則 $u^3+\frac{1}{27u^3}=0$,即 $u^3=\pm\frac{i}{3\sqrt{3}}$,取 $u=\frac{1}{\sqrt{3}}(\frac{\sqrt{3}}{2}+\frac{i}{2})$,經過化簡,固然終究也得到同樣的解,可是卻麻煩多了,注意此方程式的三個解都是實數,但在運算過程中卻出現了虛數,這種尷尬的情況,是實係數三次方程式具三實根時所呈現的現象,下面我們先介紹實根數的判別法,再介紹求三實根的三角解法。

設 $y^3+py+q=0$ 為一實係數三次方程式,其三根分別為 y_1 , y_2 , y_3 ,令 $\Delta=(y_1-y_2)^2(y_2-y_3)^2(y_3-y_1)^2$,則 Δ 稱為該方程式的判別式,由根與係數的關係可求得 $\Delta=-27q^2-4p^3$,另外,利用 $y_1=A+B$, $y_2=A\omega+B\omega^2$, $y_3=A\omega^2+B\omega$ 亦可求得:

由"虚根成對定理"知,實係數三次方程式可有三實根,或一實根 及兩共軛虛根。

當 y_1 , y_2 , y_3 皆為實數時,顯然 $\Delta \geq 0$,而 $\Delta = 0$ 意謂 y_1 , y_2 及 y_3 三者中,至少有二者相等,當 $y_1 = \alpha$ 為實數, $y_2 = \beta + \gamma i, y_3 = \beta - \gamma i$,其 β , γ 皆實數,且 $\gamma \neq 0$,則 $(y_1 - y_2)(y_1 - y_3) = [(\alpha - \beta) - \gamma i][(\alpha - \beta) + \gamma i] = (\alpha - \beta)^2 + \gamma^2 > 0$,而 $(y_2 - y_3) = 2\gamma i$,故 $(y_2 - y_3)^2 = -4\gamma^2 < 0$,因此 $\Delta < 0$,所以,我們有下述結論:

- $(I)\Delta > 0$ 時,有三相異實根。
- $(II)\Delta = 0$ 時,有三實根,其中至少兩根相等。
- $(III)\Delta < 0$ 時,有一實根及一對共軛虛根。

當 $\Delta > 0$ 時, $(\frac{q}{2})^2 + (\frac{p}{3})^3 < 0$,因此 A 與 B 皆為虚數的立方根,當然也是虛數,然而最後三根 A + B, $A\omega + B\omega^2$, $A\omega^2 + B\omega$ 卻都是實數,在這種情形,我們改用下述三角解法較為實際:

因 $y_1+y_2+y_3=0$, y_1 , y_2 , y_3 皆為實數,故可設 $y_1=r\cos\theta$, $y_2=r\cos(\theta+\frac{2\pi}{3})$, $y_3=r\cos(\theta+\frac{4\pi}{3})$,其中 r>0, $0\leq\theta<\frac{2\pi}{3}$,只要求出 r 及 θ 值即可,將 $y=r\cos\theta$ 代入原式,得

$$r^3\cos^3\theta + pr\cos\theta + q = 0$$

亦即

$$\cos^3\theta + \frac{p}{r^2}\cos\theta + \frac{q}{r^3} = 0$$

換句話說,我們得找到 r 及 θ 值,使其滿足上式,由三角恆等式 $\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$ 知

$$\cos^3 \theta - \frac{3}{4} \cos \theta - \frac{1}{4} \cos 3\theta = 0$$

與上式相比較,我們只要要求

$$\begin{cases} \frac{p}{r^2} = -\frac{3}{4} \\ \frac{q}{r^3} = -\frac{1}{4}\cos 3\theta \end{cases}$$

即可,因 $(\frac{q}{2})^2+(\frac{p}{3})^3<0$,故 p<0,因此 $r^2=-\frac{4p}{3}$ 可解得 $r=\sqrt{\frac{-4p}{3}}$ 又

$$-\frac{4q}{r^3} = -\frac{4q}{\left(-\frac{4p}{3}\right)^{\frac{3}{2}}} = -\frac{\frac{q}{2}}{\left(-\frac{p}{3}\right)^{\frac{3}{2}}}$$

的絕對值不超過 1,故 $\cos 3\theta = \frac{-\frac{q}{2}}{(-\frac{p}{2})^{\frac{3}{2}}}$ 亦可解出 θ 。

例: $y^3 - 12y - 8\sqrt{2} = 0$

解:因 $p=-12,\ q=-8\sqrt{2}$,故 $(\frac{q}{2})^2+(\frac{p}{3})^3=(4\sqrt{2})^2+(-4)^3=32-64=-32<0$,故此方程式有三實根,設 $y=r\cos\theta$,則 $r^3\cos^3\theta-12r\cos\theta-8\sqrt{2}=0$,即 $\cos^3\theta-\frac{12}{r^2}\cos\theta-\frac{8\sqrt{2}}{r^3}=0$,與 $\cos^3\theta-\frac{3}{4}\cos\theta-\frac{1}{4}\cos3\theta=0$ 相比較,令 $\frac{12}{r^2}=\frac{3}{4},\ \frac{8\sqrt{2}}{r^3}=\frac{1}{4}\cos3\theta$,得 r=4 及 $\cos3\theta=\frac{\sqrt{2}}{2}$,取 $3\theta=\frac{\pi}{4}$ 即 $\theta=\frac{\pi}{12}(=15^\circ)$,得 $y=4\cos15^\circ$,4 $\cos135^\circ$ 及 $4\cos255^\circ$,亦即 $y=\sqrt{6}+\sqrt{2},\ -2\sqrt{2}$ 及 $-\sqrt{6}+\sqrt{2}$ 。

下面我們將介紹兩種解四次方程的方法,第一種是最早發現(1545年)的Ferrari 解法:

一個四次方程式 $x^4+bx^3+cx^2+dx+e=0$ 可改寫為 $x^4+bx^3=-cx^2-dx-e$,再將左邊配方成 $(x^2+\frac{1}{2}bx)^2=(\frac{1}{4}b^2-c)x^2-dx-e$,兩邊加以 $(x^2+\frac{1}{2}bx)y+\frac{1}{4}y^2$,得:

$$(x^{2} + \frac{1}{2}bx + \frac{1}{2}y)^{2} = (\frac{1}{4}b^{2} - c + y)x^{2} + (\frac{1}{2}by - d)x + \frac{1}{4}y^{2} - e$$

右邊成為一個完全平方的充要條件為判別式等於 (),即

$$y^3 - cy^2 + (bd - 4e)y - b^2e + 4ce - d^2 = 0$$

此三次方程式稱為原方程式的豫解式,設 y1 為豫解式之一根,則:

$$(x^2 + \frac{1}{2}bx + \frac{1}{2}y_1)^2 = (m_1x + n_1)^2$$

故 $x^2 + \frac{1}{2}bx + \frac{1}{2}y_1 = m_1x + n_1$ 或 $x^2 + \frac{1}{2}bx + \frac{1}{2}y_1 = -m_1x - n_1$ 這兩個二次方程式的解均為原四次方程的解。

 $\mathfrak{FI}: x^4 + 2x^3 - 12x^2 - 10x + 3 = 0$

解:由 $x^4+2x^3=12x^2+10x-3$,配方得 $(x^2+x)^2=13x^2+10x-3$,從而 $(x^2+x+\frac{1}{2}y)^2=(y+13)x^2+(y+10)x+(\frac{1}{4}y^2-3)$,故豫解式為 $(y+10)^2-4(y+13)(\frac{1}{4}y^2-3)$,即 $y^3+12y^2-32y-256=0$,由綜合除法知 y=-4 為其中一根,代回得 $(x^2+x-2)^2=9x^2+6x+1=(3x+1)^2$,因此 $x^2+x-2=3x+1$ 或 $x^2+x-2=-3x-1$,亦即 $x^2-2x-3=0$ 或 $x^2+4x-1=0$,故 x=3 或 x=3

第二種解法,也就是 Descartes 解法,基本原理很簡單,只是分解因式與未定係數而已,將 $x^4+bx^3+cx^2+dx+e=0$ 經過 $y=x+\frac{b}{4}$ 的變換,

可消去次高項而得 $y^4+py^2+qy+r=0$,我們假定 $y^4+py^2+qy+r=(y^2+2ky+l)(y^2-2ky+m)=y^4+(l+m-4k^2)y^2+2k(m-l)y+lm$,比較係數得

$$\begin{cases} l+m-4k^2 = p\\ 2k(m-l) = q\\ lm = r \end{cases}$$

若 k=0,則 q=0,原方程式為 $y^4+py^2+r=0$,可視為 y^2 的二次方程式,假設 $k\neq 0$,由前二式解得 $l=\frac12p+2k^2-\frac q{4k},\ m=\frac12p+2k^2+\frac q{4k}$ 代入第三式,整理後得

$$64k^6 + 32pk^4 + 4(p^2 - 4r)k^2 - q^2 = 0$$

此為 k^2 的三次方程式,設 k_1 為其中一解,則 $l_1=\frac{p}{2}+2k_1^2-\frac{q}{4k_1}$ 及 $m_1=\frac{p}{2}+2k_1^2+\frac{q}{4k_1}$ 皆可求得,因此原方程式變為 $(y^2+2k_1y+l_1)(y^2-2k_1y+m_1)=0$ 例: $x^4-3x^2+6x-2=0$

解:設 $x^4-3x^2+6x-2=(x^2+2kx+l)(x^2-2kx+m)$ = $x^4+(l+m-4k^2)x^2+2k(m-l)x+lm$,比較係數得 $l+m-4k^2=-3,\ 2k(m-l)=6$,lm=-2,消去 $l,\ m$ 得 $16k^6-24k^4+17k^2-9=0$,易 見 k=1 為其中一根,則 $l=-1,\ m=2$,因此 $(x^2+2x-1)(x^2-2x+2)=0$,故 $x=-1\pm\sqrt{2}$ 或 $-1\pm i$